
Computing Error Bounds in Solving Linear 
Systems 

By J. Schr6der 

1. Introduction. Let there be given a system of mn linear algebraic equations 
for m unknowns 

(1.1) Gu = r 

and consider an iteration procedure 

(1.2) Un7+1 =M/Un + S (n = O. 1, 2, ...* 

such that the system 

(1.3) u =Mu + s 

is equivalent to (1.1). All elements of the m-dimensional vectors and the m X qn- 
matrices which occur are assumed to be real. 

In the space of m-dimensional vectors u = (ut), v, ewe define an order 
relation and an absolute value by writing 

u < v if and only if u' ?<v (i = 1,2, ,M), 

and 
jul = (ju'j). 

Similarly, for mi X i-matrices A = (aij), B, ev. we use the notation 

A < B if andonlyif a, < bj (i,j = 1,2, vz), 

and 

A i= (j| a ) 

Let B denote a matrix such that 

11 l1 ' B 

for M in equation (1.2) (use, for example, B = I Al if Al is explicitly known). 
If there exists a vector vo such that 

(1.4) 1 up - up+1 I < vO - Bvo for some index p, 

then the given equation has a solution u* for which 

(1.5)~~~~~~ U a*-Up+n I < Bnv (in = O. 1, 2, ... 

holds (Theorem 1). 
We present a method for computing a vector vo with the property (1.4). The 

calculation of vo and the vectors B vO in (1.5) constitutes an iterative procedure 
parallel to approximation procedure (1.2). This estimation procedure, described 
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at the end of Section 2, can be programmed for computers as easily as approxima- 
tion procedure (1.2). 

If the matrix B is irreducible and noncyclic and if the spectral radius p(B) of 
the matrix B satisfies 

(1.6) p(B) < 1, 

then for some p the method yields a vector vo which satisfies (1.4) (Theorem 3). 
Section 4 is concerned with the methods of simultaneous and successive dis- 

placements (with B chosen as in (4.4)). Some numerical examples (up to 15 un- 
knowns) are given. In these examples, the estimation procedure yields a suitable 
vector vo, i.e., an error bound, after at most three steps, thus the time needed for 
estimation is considerably smaller than the time needed for solving the given 
system by iteration (one need not start the estimation procedure and the approxi- 
mation procedure simultaneously). 

For many of the known estimation methods one has to calculate an upper bound 
a Of p(B) and this bound has to satisfy the condition 

(1.7) cr < 1. 

For example, this inequality (1.7) may be the row-sum criterion for the method of 
successive displacements. In this paper condition (1.7) is weakened to (1.6) where 
p(B) need not be known. 

Of course, condition (1.6) still restricts the class of iteration procedures (1.2) 
to which the estimation method can be applied. Note that the procedure (1.2) 
converges for an arbitrary vector uo if and only if 

p(M) < 1 

where the spectral radius p(MAl) of oll satisfies 

p(Mf) < p(lIMI) < p(B). 

However, every convergence condition which works with tipper bounds btj of the 
moduli I rnij I instead of with elements mij cannot be weaker than condition (1.6). 

For example, when solving difference equations for the Laplace equation by the 
method of successive displacements, one has, in general, M > 0 and p(M) < 1, 
thus, p(B) < 1 for B = Al. In the case of the biharmonic equation, however, the 
method of successive displacements in general yields p( Mj) > 1. 

2. Derivation of the Method. Let R be the set of m-dimensional real vectors 
u = (uD, V, ... , and let A = (aij), B, Al, - * denote real m X m-matrices. The 
notation u _ v, I u 1, A < B, and I A i shall be defined as in the introduction. 

Consider an equation 

(2.1) u = Mu + s 

where M! denotes a given matrix, s is a given vector and u is unknown. With Tu = 

Mu + s we can write this equation as u = Tu. 
Let B denote a fixed matrix such that 

(2.2) MI <B. 
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then let H[u, v] be the function 

H[uv] = 4(B + M) u- -(B -1) v + s. 

This function is increasing in u and decreasing in v, and for u = v we get H[u, u] 
= Tu. 

We consider the iteration procedure 

(2.3) Xn+1 = H[xn X yn] Yn+1 = H[yn , xn] (n = 0 1, 2, ). 

Because of the described properties of H[u, v], for this procedure the following 
statements hold (see [5]). 

Let the conditions 

xo -x X1, x0 -< Yo, y ?Yo 

be satisfied. 
Then, the vectors x. and yn (n = 0,1, 2, * ) defined by (2.3) satisfy the inequalities 

(2.4) Xo <_x1 _ x2 _ * * n5 Yn * -y2 -< y1 _ Yo 

Moreover, the sequences { x.n and { yn} converge to limit-vectors x* and y*, respectively, 
such that 

(2.5) .* = H[x*, y*], 1* = H[y*, x*I 

and 

(2.6) Xn < x < y *< yn (n = 01, 2, ). 

The inequalities (2.4) can be proved by induction, and the convergence of the 
sequences {on} and {fYnl then follows from the fact that these sequences are mono- 
tonic and bounded. 

Adding the two equations in (2.5) and noting that (2.6) holds, we get, in 
addition, the following statement: 

The vector 

U= 2(X + y ) 

is a solution of the given equation (2.1), and for this solution the estimate 

Xn y 
U - Yn (n = O. 1, 2, ) 

holds. 
Now let fun} and tvnt be sequences of vectors which satisfy the equations 

(2.7) Un+l = Mun + s (n = ,1, 2, Id) 

and 

(2.8) Vn+1 = Bv, (n = 01, 2, 

respectively. Then, the vectors x,, and yn defined by 

Un = 2(Xn + Yn), Vn = 2 (yn - Xn) ( = 0,1, 2, * 

i.e., 

Xn = Un - vf , yn = un + Vn (n = 0, 1, 2, ... ) 
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satisfy (2.3). We reformulate the main results stated above in terms of the vectors 
u,, and vU, instead of xn and n, . 

THEOREM 1. Let the conditions 

(2.9) Vo _ o and Iuo-u1 I < o'-vI 

be satisfied. 
Then, the vectors un and v, (n = 0, 1, 2, ** ) defined by (2.7) and (2.8) satisfy 

the inequalities 

(2.10) vI Z o, Un - Un+1 <_ Vn - Vn+ (n = 0, 1, 2, ... 

Moreover, the sequences {Jnu and {v4,) converge to vectors u* and v*, respectively, such 
that 

U* = IMu* + s and v* = Bv*, 

and for u* the error estimate 

(2.11) lU - uIj < v, (n = 0,1,2, * 2 ) 

holds. 
From Theorem 1 we start to develop a method of error estimation for the 

iteration procedure (2.7). Clearly, we can replace the vectors ui in the theorem, 
which occur by uj+, (p denoting a fixed non-negative integer). The assumption 
(2.9) then takes the form 

(2.12) vo _>o, |up-uP?p+ v | vo-VI 

and the estimate (2.11) becomes 

(2.13) 1 u* - u,;+p V n vn (n = 0,1,2, ) 2 

When the vectors up and up+, are known one could try to construct a suitable 
vector vo using the special properties of the given problem. However, the error 
estimate would then, in general, be much more complicated than the calculation 
of the approximations un because one can easily program the procedure (2.7) for 
computers. Therefore, we will establish a method of error estimation which also 
can be programmed quite easily. 

A Method of Error Estimation for the Iteration Procedure un+i = Mu/z + s. 
Starting with some vector 

we > o (for example wo o) 

and using the formula 

(2.14) Wu'+1 = Bwn + n+w1 with 6+=+1 - un+1 - Ua | 

calculate vectors w, tip to the first index n = p for which 

(2.15) wP > wp+? 

provided that such an index exists. Calculate in addition vectors zn (?I = 

p, p + 1, )defined by 

zp = wp, zn+1 = Bz,, (n = p, p + 1, - . 
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THEOREM 2. If there exists an index p such that (2.15) holds, then the sequence 
u{4n converges to a solution uO = Mu* + s and 

(2.16) | u - uI ?< Zn (n = p, p + 1, 

Proof. Suppose p is an index such that (2.15) holds. Then, let {Jv} denote the 
sequence defined by (2.8) for vo - w, . Clearly, one has vo > o. Moreover, also the 
second inequality in (2.12) is satisfied because this inequality is equivalent to the 
condition (2.15). Thus the sequence {u. I converges to a solution u* which satisfies 
the inequality (2.13), and this inequality is equivalent to (2.16). 

3. Theoretical Investigation of the Method. We now investigate the conditions 
under which the method of error estimation described above will be successful. 

For this, we assume that the matrix B is irreducible (non-decomposable) and 
noncyclic. Then, also because B > 0 according to Frobenius [3] the following 
statements hold. 

Matrix B has an eigenvalue X > 0, called the maximal root of B, such that X is 
greater than the modulus of each other eigenvalue of B. Corresponding to X there 
exists an eigenvector in = (so*) with 

(3.1) (t > 0 (i = 1, 2, -M ), 

and there are no eigenvectors or principal vectors (generalized eigenvectors) corre- 
sponding to X which are linearly independent of (o. 

Thus, each vector u e R can be written as a sum 

(3.2) =u() +, 

where u(1) is a constant and Vt = V/(u) is a linear combination of the eigenvectors 
and principal vectors of B belonging to eigenvalues different from X. 

Then let P1 and P2 denote the two projection matrices defined by 

Piu = u ')s (for u E R), P2 =I-P1, 

and moreover let 

B1 = BP, B2 = BP. 

Then the equation 
B = B1 +B2 

represents a spectral decomposition of matrix B with B1 belonging to X and B2 
belonging to the remainder of the spectrum of B. We have 

(3.3) B'u = B1nu + B2'U = X n(u)(p + B2nu. 

Let p(A) denote the spectral radius of a matrix A, i.e., the maximum of the 
moduli of its eigenvalues. Then, we have p(BI) = p(B) = X and 

(3.4) p(B2) < X. 

If u is a vector such that u > o, then B'u > o (n = 0, 1, 2,* ) and it follows 
from (3.3) that 

(3.5) u(p' + (X-'B2)n u ? o 
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Because of (3.4) the inequality (3.5) yields uMlas ? o for n -> oc, hence u(') > 0. 
This proves the statement that 

(3.6) u _ o implies up1) > 0. 

If u' > 0 for all i = 1, 2, , n, then there exists a constant a > 0 such that 
u > aso and we now derive from (3.3) 

U(py + (X-'B2) n U = X-?Bnu > XJ-n aBn~p ap. 

Hence, for n -o we obtain the result 

(3.7) ui > 0 (for all i = 1, 2, ... , n) implies up) > 0. 

We write 

u> o if andonlyif u ? oandu Xo 

and we now also prove that 

(3.8) u > o implies u > 0. 

Let A > X, then the equation 
00 

EI r ti = (I -z-B 
i=o 

holds, and the matrix (I - ,7'lB) ' has all elements positive because B is irre- 
ducible. (This follows from Theorem 2.2 in [7], applied to A = ,uI, z = n and B as 
defined above.) Therefore, if u > o, all components of the vector 

V = (I -,-'7'B)-'u = ZIJ-tBtU 
i=O 

are positive, hence it follows from (3.7) that vQ) > 0. Finally, we conclude from 
the equation 

v 1n = 
Piv 

= 
Pi tB u = Z,-i>2t(l) s = u~')(1 - x2r-1 i~o i=O 

and that up') > 0. 
THEOREM 3. Suppose that matrix B is irreducible and noncyclic, and assume 

moreover that the maximal root X = p(B) satisfies 

(3-9) X < 1. 

Then there exists an index p such that (2.15) holds. 
Proof. Consider the sequence { wo4 defined by 

= WO , L71+1 = Bwol + 3fl+1 (n = 0, 1, 2, . . 

We shall prove that 

(3.10) W-n n+1 >o for n large enough, 

which is sufficient for the existence of an index p with the desired property. 
We first suppose that co = wo = o. Then, if uo = ul the inequality (2.15) is 

satisfied for p = 0. Therefore, we will assume that 61 = I ,- uo I > o. 



COMPUTING ERROR BOUNDS IN SOLVING LINEAR SYSTEMS 329 

The difference Un-en wd can be written as 

(On - Cin+1 = (I - B)(Bn-1eia + Bn-232 + + n) - An+l (n = 1 2, ) 

with 

(3.11) 6j = I Mil IEl (j = 1,2,.) 

and 
E1 = U1 - U0 

In the following we consider two cases described by p(M) < X and p(M) = , 
respectively. 

Case I. Let 

(3.12) p(Mlf) < X 

Using (3.3), we decompose COn - fln into two summands 

(3.13) in - n+l = 8 + Sn2 (n =1, 2, ...) 

with 
S = (1- _.)(fn-ll(1) + Xn-2ai + + . . + < 

S2 = (P2 - B2) 77n - bn+1 
and 

1qn = B2 n-11 + B2n-262 + - + ? n . 

Because of (3.6), all coefficients 3j(1) are non-negative. Therefore, we get 

(3.14) X-n+IS,, (1 - X)5 (1) (n = 1, 2, ... ) 

and from (3.1), (3.8), and (3.9) we show that the vector on the right side of (3.14) 
has all components positive. 

Because the spectral radii of B2 and Ml are smaller than X and because aj is of 
the form (3.11), the series n X70B27 and 

00 

(3.15') E-n+16 
n =1 

converge. Therefore, the product series 
X4 00 X0 

(3.16) 'E A- n+1n = Z ,-B2i-. E X-j+1 n=l i=O J_ 
also converges. In particular, the summands X-7n'l 3, and X-n+1"n of the series 
(3.15) and (3.16) converge to the null vector. Thus, we have 

(3.17) lim X-n+'S, 2 =0 
n W-- oo 

and this relation, together with the inequality (3.14), indicates that (3.10) holds 
in Case I. 

Case II. Suppose now that p(lM) = X. Then, according to a result of Wielandt 
[8], M can be written as 

(3.18) 31 = e0aD1BD 
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where a denotes a real number and D is a diagonal matrix with diagonal elements 
of modulus 1. Because M is supposed to be real the relation (3.18) holds for a = 0 
or a = ir and a diagonal matrix D with diagonal elements 4 1. 

In this case the vectors 3j take the form 

aj = I j1'E El I = I D-'B-'1D E, = l jir = It xj- + B' Y-l 

withy DE (j = 1, 2, - ). 
If (1 = 0, then we start again with the decomposition (3.13), for which (3.14) 

holds. As in Case I, we can prove again that (3.17) holds. For this, we now use 
bj = I B2 -lD 1 and (3.4) instead of (3.11) and (3.12). As in Case I, (3.14) and 
(3.17) together yield (3.10). 

Now let t(I) X 0. Then we have 

6, = I I(') I Xj-' i 4v | with t, = Sc' - [v4'j]'(K'B2) ''D (j = 1, 2, ... ) 
Because of (3.1) and since the second summands of the tj converge to o for j -*oc 

there exists a number jo such that As > o for j _ jo ; hence 

(3.19) a I g(') I X'j-'l + (sgn t(l')B2'lP for j > .o 1 

Suppose now that n > jo + 1. Then we write 

r -o(n+1 as a sum AOn - COn+l- SQ + Sn4 (n > jo + 1) 

where 

Sn= (I - B)(B'n-16 + Bn-2 62 + ... + Bn-jo 60) 

and 

Sn4 = (I - B)(Bnio-lo0?1 + * + an) - 6n+i. 

Using (3.3) we decompose Sn3 further into a sum 

Sn 
3 = Sn31 + 

32 

with 

Sn31 _ (1 - X) (An161!) + X82 1) + .. no+ bjl) 

S32 
= 

(I - B2)B2n o(B2)o161 + . 
+ jk). 

Since the coefficients j (1) are non-negative, we get 

(3.20) --n'lSn 31 > (1 - X)6 1 y (n > jo + 1), 

where the vector on the right side of the inequality has all components positive. 
The second summands Sn 32 satisfy 

(3.21) lim XJ-n+IS 32 = 0 

This follows from (3.4) because jo is a fixed number. 
Using (3.19), we also split up Sn4 into the following sum: 

S,4 _ 41 + n42 
En = En+fi 
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with 

Sn 1 [(I - B) (xiOB'j"-l + ... + X-1I) - (P 

](1) 
1 n-1[(n jo)(1 - X) - X](p 

and 

S 42 = (sgn (')) [(I - B) (Bnio-lB2Jo + 
... + B2n-1) B2-n] 

= (sgn PW )B2 n-[(n - jo) (I - B2) -Bj. 
We have 

(3.22) A n41 > o for n large enough, 

and from (3.4) we deduce that 

(3.23) iM X-n+lSn 42 = 0. 
n-oo 

Altogether, from the relations (3.20), (3.21), (3.22), and (3.23) it follows that 
(3.10) holds in Case II also. 

Finally, let wo = wo > o. Then, the difference con - Wn+1 gets an additional 
summand 

Sn = (I - B)B~wo = (1-X)X8wol1* + (I - B2)B2nw0 (n = 1, 2,* . 

These summands Sn satisfy 

lim Xjn+lSn = (1 - X) Xwo( )s? 

where the vector on the right side has all components positive. Thus, (3.10) also 
holds in this case wo > o (even if u1 -o = o, i.e., bi(') = 0 in (3.14) and (3.20)). 

COROLLARY. Suppose that matrix B is irreducible and let ul 5 uo . Then, condition 
(3.9) is necessary for the existence of a vector vo which satisfies 

(3.24) v >- o and uo - ul ? vo - Bvo. 

Remark. This corollary, together with Theorem 3, says, roughly speaking, that 
if B is irreducible and noncyclic, the method of estimation in Section 2 is always 
successful if one can get an estimate with Theorem 2. 

Proof of the corollary. Since u1 - uo, it follows from (3.24) that 

vO>o and (I-B)vo>o, 

hence, in view of (3.8) 

vo (1) > o and [(I - B)vo](1) = (1 -'X)vo(l' > o. 

These two inequalities can hold only if X < 1. 

4. Applications to Numerical Examples. A given system of m linear equations 

(4.1) Gu = r with gii > 0 (i - 1,2, ,m) 

can be written in the form (2.1) as follows. Let G = D - C - C2 where D is the 
diagonal matrix with diagonal elements gii and C0 is some lower triangular matrix. 
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Then equation (4.1) is equivalent to (2.1) with s = (D - C1)-1r and 

(4.2) M = (D - C1)-1C2. 

In case Cl = 0 the iteration procedure 

(4.3) Un+1 = MUn + S (n = 0, 1, 2, ... 

is the method of simultaneous displacements of the system (4.1). On the other 
hand, if C2 is an upper triangular matrix (4.3) represents the method of successive 
displacements for equation (4.1). 

For matrix M given in equation (4.2) inequality (2.2) is satisfied for 

(4.4) B = (D - C,| |C2| 

Clearly, one need not start the estimation procedure described at the end of 
Section 2, and the approximation procedure (4.3) simultaneously. One can define 
Wo = w1 = = Wq (q denoting some non-negative integer), then start to calcu- 
late further vectors by equation (2.14). In this case, the estimation method is de- 
scribed by the following formulas for matrix B in equation (4.4): 

Wq ? o (with q a given non-negative integer); 

(D - C1 |)rn+l = C21 Wn , Wn+i = Tn+1 + a+?1 (n = q, q + 1, , p) 

where ant = lUn-Un I and p is the smallest index such that wp > wpil1 

Zp= WP (D - I C1 |) Znm1 = C2 I Z (n = p, p + 1, ). 

This procedure has been programmed for the CDC 1604 Computer. Of course 
the index p and the bounds Zn depend on the value of the chosen q. To indicate 
this we write p = p(q) and Zn = Zn(q). According to Theorem 2 we have 

U- Un I -z (q) for n > p (q) 

The following examples have been calculated using the program mentioned 
above with wq = o. 

Example 1. The system Gu = r with G and r as given in Table 1 consists of 
difference equations which approximate a certain boundary value problem for the 
Laplace equation [4]. We solve this system by the method of successive displace- 
ments. In the present case, we have Ci = I Ci I and C2 = C2 1, thus 

(4.5) HI = B. 

The starting vector uo as given in Table 2 is the (rounded) solution of difference 
equations for a smaller mesh width. In the same table are listed the exact errors 

u- = Un-u* for some indices n and the corresponding bounds Zn(q) for q = 0, 10, 
and 15. The indices p(q) belonging to these values of q are 

p(O) = 3, p(l0) = 11, p(15) = 16. 

This indicates that the estimation method was successful for q = 0 after three 
steps and for q 10 and q = 15 after one step. Table 2 shows that the bounds 
for q = 10 and q = 15 are equal (up to nine decimals) but sharper than the bounds 
for q = 0. We learn from this that the estimation procedure should not be started 
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immediately (q = 0), but rather after the iteration process (4.3) has become 
"steady." That the bounds for q = 10 and q = 15 are almost equal is a consequence 
of (4.5) (in this connection, see also the next example). It would have been suf- 
ficient to start the estimation procedure at q = 15. 

Example 2. Matrix G and vector r of the second example are given in Table 3. 
The corresponding equation Gu = r consists of difference equations approximating 
a boundary value problem for the differential equation A?iu = sp(x, y) [1]. In 
general, condition p(B) < 1 is not satisfied for such problems. However, the esti- 
mation method works in this case with a few unknowns. We calculate this example 
in order to test how the bounds Zn(q) behave if p(M) < p(B) < 1 

Numerical results for q = 0, 10, and 25 are given in Table 4. The corresponding 
indices p are 

p(O) = 2, p(10) = 12, p(25) = 27. 

In this example, the largest index q gives the sharpest bounds. This can always be 
expected if p(M) < p(B), because in this case the vectors I An I decrease faster 
than the bounds z, . For example, if the equation det (M- KI) = 0 has a simple 
root Ki such that I KI I= p(M) and all other eigenvalues of M have moduli smaller 
than I K] l, then we have in general 

(4.6) | tna l | p(M) for all sufficiently large n 

while 

Z.+, p(B)zn for all sufficiently large n. 

The number of steps p(q) - q from the beginning of the estimation procedure 
until success is achieved is the same for the two larger values of q. This phenomenon 
also occurred in Example 1. It can be explained by the fact that, in general, &n+l 

P( Al) an for n large enough. 
Further Examples. In Example 3 we have solved a system of 15 difference 

equations which approximate the same boundary value problem as the equations 
in Example 1 and which are of the same type as those equations; however, in 
Example 3 the row-sum criterion is not satisfied. Compared with Example 1 
there has been no essential difference in the behavior of the estimation procedure. 
Therefore, we give only a few numerical results in Table 5. Furthermore, we applied 
our method to a system Gu = r with a 2-cyclic matrix G (Example 4) using the 

TABLE 1 
Coefficients of Example 1 

Matrix G Vector r 

12 -1 -1 0 -2 -2 -2 -2 1 
-2 12 0 0 0 -4 -4 0 1 
-2 0 12 -2 -4 0 0 -2 0 

0 0 -2 14 -2 0 0 0 0 
-2 0 -2 -1 13 -1 0 -1 0 
-2 -2 0 0 -1 12 -1 0 0 
-2 -2 0 0 0 -1 12 -1 6 
-4 0 -2 0 -2 0 -2 12 2 



334 J. SCHRODER 

I- _ 0 tsot 00 oo Loo 

m LOb C: C 
oo oo 

cq 

1-4 ( 
:_s 

o o o 

oo CT n o o Co o?o?? 

_ oocs e n t ICD CD CD 

00 r S o L O NV mO mO o?C 

co4 
I 

cq N m wd 

t- LO 8 t8 8o 1?o 

w^ ~ ~ L ms _ t- LO LO in 0 

kor C 8X C CO) C:)FoosN 

N 0 8 8 o o o o Zo o o 
11 o o ooo 

*r~~~~~- co m 
o . 

- 

C- ) -4 -8 ? ?? 

a~~~~~~~~~~~- --I ca oCO 
*z; 0 I t- to 0 0 0? ?0 0 

N 
u: 8 

?8o 8 ??? 

~~ I >~ co C< c c o _q _9 c 

N N to ? 8o o) ? m 

9 I " | 8%O 0 00 0 CD C C0 

14 _ CD ccl< o o ?o 

- t t-Q0tr - r-4- 
cq a-, o . o-X>s 

| I I~~~C 



COMPUTING ERROR BOUNDS IN SOLVING LINEAR SYSTEMS 335 

TABLE 3 
Coefficients of Example 2 

Matrix G Vector r 

12 -3 -3 1 1 
-3 10 -2 -3 1 
-3 -2 10 -3 1 

2 -6 -6 11 1 

TABLE 4 
Results of Example 2 (uo - starting vector, t,, = it, - u* exact error, zn(q) 

bounds for gn) 

i 1 2 3 4 

uoi 1 1 1 1 

P2i 0.079 260 342 0.097 059 129 0.175 309 129 0.117 789 897 
z2i(0) 0.275 0.327 954 545 0.273 545 455 0.334 426 997 

t12 0.000 474 178 0.000 677 978 0.000 601 444 0.000 611 652 
1Z2(10) 0.000 861 331 0.001 076 452 0.000 967 820 0.001 140 014 
Z42(0) 0.009 386 534 0.011 627 371 I 0.010 937 345 0.014 014 669 

.?27 0.000 000 096 0.000 000 137 0.000 000 122 0.000 000 123 
Z27(25) 0.000 000 174 0.000 000 217 0.000 000 196 0.000 000 230 
z27(10) 0.000 006 455 0.000 007 996 0.000 007 522 0.000 009 638 
Z27(0) 0.000 076 075 0.000 094 237 0.000 088 644 0.000 113 585 

t30 0.000 000 018 0.000 000 025 0.000 000 022 0.000 000 023 
zio(25) 0.000 000 062 0.000 000 076 0.000 000 072 0.000 000 092 
3z4(10) 0.000 002 464 0.000 003 053 0.000 002 871 0.000 003 679 
430(0) 0.000 029 040 0.000 035 973 0.000 033 838 0.000 043 358 

procedure of simultaneous displacements. In this case matrix B in (4.4) was 
2-cyclic also, and the estimation procedure was unsuccessful. 

General Remarks Concerning Practical Application. The sharpness of the bounds 
Zn(q) depends on the chosen index q. In general, for larger q one gets sharper bounds 
after the estimation procedure has been successful, i.e., for n > p(q). Only if 
p(M) = p(B) can one expect that the bounds are almost equal for different q, 
provided q is so large that the iteration process has become "steady." Moreover, 
the time needed for the estimation becomes smaller for larger q. Therefore, the 
best way might be to start the estimation procedure with an index q such that 5q is 
smaller than a suitably chosen bound. Then, the approximations are improved still 
more for n > q. 

There are several further possible ways to verify the program. For example, one 
may use the fact that in general the differences p(q) - q become equal for q large 
enough. One may start at some index qi in order to find p(q1) - q , then stop the 
estimation procedure and start it again with a suitable index q2 such that p(q2) ~ 
q2 + (p(ql) - qj). 

In our examples we used the starting vector wq = o. In other cases however, 
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TABLE 5 
Some Results of Example 3 

I U01 = 0.39256 

U18 = 0.384 711 925 
Z18(15) = 0.000 007 026 

U28 = 0.384 707 090 
Z18(25) = 0.000 000 145 
Z28(15) = 0.000 000 145t 

U30 = 0.384 707 035 
Z1o(25) = 0.000 000 067 
z1o(15) = 0.000 000 067 

for a vector 

Wq = 6 

with fi> 0 the corresponding number p might be much smaller than for Wq o. 
For example, let 

? > 0 and B=IMI. 

Then, for q large enough the difference uq - Uq,+ in general is approximately 
proportional to sa. Suppose that uq - uq,+ = so and choose Wq = Ob3q = f34. Then 
the first index n = p for which wp > w_+, holds is the smallest integer such that 

p _ X[(l- - )-1-3] +q and p > q. 

For /3 = 0 and X very close to 1 this is a large number, for 0 > (1 - X) -' however, 
one has p = q. Of course, for 3 much larger than ( 1 - X)-1 the bound w, = Wq is 

not sharp. 
For example, solving large systems of difference equations for the Laplace 

equation by the method of successive displacements one may choose 

Wq = (1 - K)aq 

where K approximates the corresponding eigenvalue X. Such an approximation KiS 

known in many cases. 
Round-off errors have not been considered in our program. However, we believe 

that it is not difficult to do this if suitable subroutines are available. It certainly is 
not necessary to take into consideration all round-off errors which occur in the 
entire approximation and estimation procedure. One has to do this only for the 
last step. 

Let no be the index up to which the approximations and bounds have been 
calculated. Then, consider the vectors u.0-i and zno,- as they are computed with a 
certain number of digits. If one can show that 

(4.7) zno_1 > o and u.0-1 - uJ0 | z.0- -z.0 

hold, then as a consequence of Theorem 1, applied to u,0_1 and z,1Ol instead of uo 
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and vo, there exists a solution u* such that I U-u,0 < z,, and I u - u.n- I < 
Zn0-1 

If the entire approximation and estimation process could be done without 
round-off errors, then, certainly, inequalities (4.7) would be satisfied. This follows 
from the statement (2.10) in Theorem 1. Therefore, in general, one can expect 
that (4.7) can be proved also for the vectors un0_l and ZnO-l which are actually 
computed. 

In (4.7), u,,o and zno do not denote the vectors numerically calculated, but the 
exact vectors defined by 

(4.8) Uno 0 MUno-i + S, Zno = Bz,,0- 

Thus, one has to estimate the round-off errors which occur in computing Uno and 
z,4 by (4.8). 

In order to do this, one may, for example, reckon with pairs of numbers (instead 
of numbers) in (4.8). For example, a subroutine for calculation with pairs of 
numbers has been written for the IBM 650 Computer and this subroutine has been 
successfully applied for error estimation for certain differential equations [6]. A 
similar subroutine has been developed by G. E. Collins for the IBM 704 Computer 
(1959). The method of calculating with pairs of numbers is called "interval arith- 
metic" by Collins. This method has been used for desk computers by Dwyer [2] 
under the name "range arithmetic." 
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